Molecular crowding creates traffic jams of kinesin motors on microtubules.

نویسندگان

  • Cécile Leduc
  • Kathrin Padberg-Gehle
  • Vladimír Varga
  • Dirk Helbing
  • Stefan Diez
  • Jonathon Howard
چکیده

Despite the crowdedness of the interior of cells, microtubule-based motor proteins are able to deliver cargoes rapidly and reliably throughout the cytoplasm. We hypothesize that motor proteins may be adapted to operate in crowded environments by having molecular properties that prevent them from forming traffic jams. To test this hypothesis, we reconstituted high-density traffic of purified kinesin-8 motor protein, a highly processive motor with long end-residency time, along microtubules in a total internal-reflection fluorescence microscopy assay. We found that traffic jams, characterized by an abrupt increase in the density of motors with an associated abrupt decrease in motor speed, form even in the absence of other obstructing proteins. To determine the molecular properties that lead to jamming, we altered the concentration of motors, their processivity, and their rate of dissociation from microtubule ends. Traffic jams occurred when the motor density exceeded a critical value (density-induced jams) or when motor dissociation from the microtubule ends was so slow that it resulted in a pileup (bottleneck-induced jams). Through comparison of our experimental results with theoretical models and stochastic simulations, we characterized in detail under which conditions density- and bottleneck-induced traffic jams form or do not form. Our results indicate that transport kinesins, such as kinesin-1, may be evolutionarily adapted to avoid the formation of traffic jams by moving only with moderate processivity and dissociating rapidly from microtubule ends.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic of molecular motors: from theory to experiments

Intracellular transport along microtubules or actin filaments, powered by molecular motors such as kinesins, dyneins or myosins, has been recently modeled using one-dimensional driven lattice gases. We discuss some generalizations of these models, that include extended particles and defects. We investigate the feasibility of single molecule experiments aiming to measure the average motor densit...

متن کامل

Crowding of molecular motors determines microtubule depolymerization.

The assembly and disassembly dynamics of microtubules (MTs) is tightly controlled by MT-associated proteins. Here, we investigate how plus-end-directed depolymerases of the kinesin-8 family regulate MT depolymerization dynamics. Using an individual-based model, we reproduce experimental findings. Moreover, crowding is identified as the key regulatory mechanism of depolymerization dynamics. Our ...

متن کامل

Computational modelling of the collective stochastic motion of Kinesin nano motors

We have developed a two dimensional stochastic molecular dynamics model for the description of intra cellular collective motion of bio motors, in particular Kinesins, on a microtubular track. The model is capable or reproducing the hand-over-hand mechanism of the directed motion along the microtubule. The model gives the average directed velocity and the current of Kinesins along the microtubul...

متن کامل

Motor transport of self-assembled cargos in crowded environments.

Intracellular transport of cargo particles is performed by multiple motors working in concert. However, the mechanism of motor association to cargos is unknown. It is also unknown how long individual motors stay attached, how many are active, and how multimotor cargos would navigate a densely crowded filament with many other motors. Prior theoretical and experimental biophysical model systems o...

متن کامل

Processive movement of single kinesins on crowded microtubules visualized using quantum dots.

Kinesin-1 is a processive molecular motor transporting cargo along microtubules. Inside cells, several motors and microtubule-associated proteins compete for binding to microtubules. Therefore, the question arises how processive movement of kinesin-1 is affected by crowding on the microtubule. Here we use total internal reflection fluorescence microscopy to image in vitro the runs of single qua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 16  شماره 

صفحات  -

تاریخ انتشار 2012